Localized activity patterns in excitatory neuronal networks.

نویسندگان

  • Jonathan Rubin
  • Amitabha Bose
چکیده

The existence of localized activity patterns, or bumps, has been investigated in a variety of spatially distributed neuronal network models that contain both excitatory and inhibitory coupling between cells. Here we show that a neuronal network with purely excitatory synaptic coupling can exhibit localized activity. Bump formation ensues from an initial transient synchrony of a localized group of cells, followed by the emergence of desynchronized activity within the group. Transient synchrony is shown to promote recruitment of cells into the bump, while desynchrony is shown to be good for curtailing recruitment and sustaining oscillations of those cells already within the bump. These arguments are based on the geometric structure of the phase space in which solutions of the model equations evolve. We explain why bump formation and bump size are very sensitive to initial conditions and changes in parameters in this type of purely excitatory network, and we examine how short-term synaptic depression influences the characteristics of bump formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions

Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity pa...

متن کامل

Chaos in neuronal networks with balanced excitatory and inhibitory activity.

Neurons in the cortex of behaving animals show temporally irregular spiking patterns. The origin of this irregularity and its implications for neural processing are unknown. The hypothesis that the temporal variability in the firing of a neuron results from an approximate balance between its excitatory and inhibitory inputs was investigated theoretically. Such a balance emerges naturally in lar...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Intrinsic dynamics in neuronal networks. I. Theory.

Many networks in the mammalian nervous system remain active in the absence of stimuli. This activity falls into two main patterns: steady firing at low rates and rhythmic bursting. How are these firing patterns generated? Specifically, how do dynamic interactions between excitatory and inhibitory neurons produce these firing patterns, and how do networks switch from one firing pattern to the ot...

متن کامل

Irregular behavior in an excitatory-inhibitory neuronal network.

Excitatory-inhibitory networks arise in many regions throughout the central nervous system and display complex spatiotemporal firing patterns. These neuronal activity patterns (of individual neurons and/or the whole network) are closely related to the functional status of the system and differ between normal and pathological states. For example, neurons within the basal ganglia, a group of subc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Network

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2004